Article 2121
Title of the article |
Numerical nvestigation of the TE-polarized complex electromagnetic waves in an open nonhomogeneous layer
|
Authors |
Evgeniy Yu. Smol'kin, Candidate of physical and mathematical sciences, associate professor of the sub-department of mathematics and supercomputer modeling, Penza State University (40 Krasnaya street, Penza, Russia), E-mail: e.g.smolkin@hotmail.com
Maksim O. Snegur, Postgraduate student, Penza State University (40 Krasnaya street, Penza, Russia), E-mail: snegur.max15@gmail.com
|
Index UDK |
519.63: 621.372.8
|
DOI |
10.21685/2072-3040-2021-1-2
|
Abstract |
Background. The purpose of this work is to study numerically TE-polarized waves in a layer filled with various dielectric materials.
Material and methods. In order to obtain a numerical solution to the problem, the parameter shooting method is used.
Results. Complex and propagating leaky waves, complex and propagating surface waves were numericially found.
Conclusions. The proposed numerical method is an effective way to find an approximate solution to the problem of propagation of electromagnetic waves.
|
Key words |
propagation of electromagnetic waves, TE-waves, Maxwell's equation, differential equations, shooting method
|
 |
Download PDF |
References |
1. Adams M. Vvedenie v teoriyu opticheskikh volnovodov = Introduction to the theory of optical waveguides. Moscow: Mir, 1984:512. (In Russ.)
2. Snayder A., Lav Dzh. Teoriya opticheskikh volnovodov = Optical waveguide theory. Moscow: Radio i svyaz', 1987. (In Russ.)
3. Vaynshteyn L.A. Elektromagnitnye volny = Electromagnetic waves. Moscow: Radio i svyaz', 1987:655. (In Russ.)
4. Markuze D. Opticheskie volnovody = Optical waveguides. Moscow: Mir, 1974:576. (In Russ.)
5. Smirnov Y., Smolkin E. Complex Waves in Dielectric Layer. Lobachevskii Journal of Mathematics. 2020;41:1396–1403.
6. Smirnov Y.G., Smolkin E.Y. On the Existence of an Infinite Number of Leaky Complex Waves in a Dielectric Layer. Doklady Mathematics. 2020;101:53–56.
7. Smolkin E. Numerical Method for Electromagnetic Wave Propagation Problem in a Cylindrical Inhomogeneous Metal Dielectric Waveguiding Structures. Mathematical Modelling and Analysis. 2017;22:271–282.
8. Smolkin E., Valovik D. Nonlinear propagation of coupled electromagnetic waves in a circular cylindrical waveguide. Computational Mathematics and Mathematical Physics. 2017;57:1294–1309.
|
Дата создания: 28.04.2021 08:39
Дата обновления: 28.04.2021 08:53